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Disorder can eliminate oscillator death

Leonid Rubchinsky* and Mikhail Sushchik†

Institute of Applied Physics, Russian Academy of Science, 46 Ulyanov Street, 603600, Nizhny Novgorod, Russia
~Received 20 April 2000!

We use an array of diffusively coupled limit-cycle oscillators with a regular monotonic trend of natural
frequencies to demonstrate that the disorder introduced in the form of random deviations from a linear trend of
frequencies can weaken considerably desynchronization-induced oscillator death and, as a result, increase
oscillation intensity substantially. There exist definite optimal levels of magnitude of spatial disorder at which
maximal oscillatory energy is attained in the array.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Synchronization of arrays of oscillatory systems has
ways been a subject of inquiry because they are freque
encountered in physics, engineering, chemistry, biology,
other branches of science. Modern applications inclu
chains of lasers, Josephson junctions, and relativistic ma
trons, as well as modeling of the mechanisms of rhythm
activity of cardiac, nervous systems, and others~see, e.g., the
literature cited in@1,2#!. In recent years this interest was al
associated with the advance made in constructing infor
tion processing systems consisting of a large number of
tive elements~cellular neural networks@3#!. In this connec-
tion, of special interest is the influence of inhomogeneit
on synchronization in oscillator lattices. This influen
proved to be highly nontrivial. Inhomogeneities~including
spatially irregular ones, i.e., disorder! introduced into a sys-
tem in which complex spatiotemporal patterns exist can,
example, lead to more synchronous behavior of the osc
tors. Examples include improved synchronization in e
sembles of coupled nonlinear pendulums modeling chain
Josephson junctions@4# and in arrays of coupled maps use
as models of earthquake dynamics@5#, as well as regulariza
tion of dynamics in chains of coupled chaotic oscillators@6#.
Spatially uncorrelated noise can enhance stochastic r
nance effects in the spatiotemporal variant@7#, facilitate sig-
nal propagation in arrays of bistable systems@8#, sustain
traveling waves in subexcitable chemical media@9#, sustain
patterns~including spiral ones! @10#, induce pattern transi
tions @11# and fronts@12#, and so on.

However, the influence of spatial disorder on oscilla
death in oscillator arrays with local couplings was outs
the scope of the references cited above. The phenomeno
oscillator death has attracted the attention of researc
since the appearance of Ref.@13#. Significant progress wa
achieved in theoretical and numerical analysis of oscilla
death in systems of oscillators with ‘‘all-to-all’’ coupling
@1,14#. In recent years oscillator death has become an ob
of experimental study@15#. Our paper deals with oscillato
death in oscillatory arrays with local couplings, namely,
chains of self-oscillators@16,17#, and we study here the ac
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tion of disorder on such an oscillator death. During such
oscillator death, which occurs at sufficiently strong dissip
tive coupling in regions of fast increase~or decrease! of natu-
ral frequencies along the chain, regions of vanishing osci
tion amplitude are formed, even if the conditions of se
excitation are fulfilled for each element in the absence
coupling. The mechanism of formation of such regions
based on increased losses of oscillations in each oscill
under the action of sufficiently large dissipative coupling
ter breakdown of synchronization@17#. An example of syn-
chronized clusters and regions of oscillator death in an a
of 103 coupled oscillators is given in Fig. 1@18#. In this
example we use the equations for slow complex amplitu
zj5uzj uexp(iwj) in the form

żj5 iv j zj1~p2uzj u2!zj1d~zj 1122zj1zj 21!. ~1!

FIG. 1. ~a! The dashed line shows the spatial distribution
natural frequenciesv j in the model~1!. The solid line shows the
averaged frequencies of oscillationsV j of the elements of the array
~1! for such v j . ~b! Spatial profile of time-averaged intensity o
oscillations ^uzj u2&. One can easily see regions of synchroniz
clusters of oscillations~where the spatial variations of natural fre
quenciesv j are relatively slow—in the vicinity of the extrema o
cosinelike distribution ofv j in space! and regions of oscillator
death with infinitely small amplitude of oscillations~where the gra-
dient of v j is relatively large!.
6440 ©2000 The American Physical Society
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PRE 62 6441DISORDER CAN ELIMINATE OSCILLATOR DEATH
Here, the diffusive coupling constantd520p and the range
of frequency scatterDv512p, wherep50.5 is the oscilla-
tion growth rate.

At first sight it may seem that introduction into the syste
of additional inhomogeneities by superimposing random
quency changes on the smooth frequency trend will o
enhance the effect of oscillator death. However, we fou
that the inverse effect is also possible. Under definite con
tions, the degree of death caused by the monotonic tren
natural frequencies can be decreased substantially by in
ducing spatial disorder. There exist optimal levels of disp
sion of spatial disorder at which maximal values of me
‘‘incoherent’’ energy«;^( j 51

N uzj u2& and mean ‘‘coherent’’
energyw;^u( j 51

N zj u2& are attained in the array.
In the next section we present the model we use to st

the action of disorder on oscillator death. Section III is d
voted to our numerical experiments and discussion of th
results. In Sec. IV we suggest an explanation of the phen
ena observed in numerical experiments. Finally, we end w
a brief summary of this work and our conclusions.

II. MODEL DESCRIPTION

In this work we restrict ourselves to considering a on
dimensional chain of diffusively coupled oscillators with fre
ends and linear variation of frequency along the chain. S
a model was chosen for the following reasons. On the
hand, this model provides a rather broad range of parame
in which synchronized clusters coexist with regions of os
lator death as is typical of inhomogeneous systems. On
other hand, the model contains the simplest type of inhom
geneity in the sense that, in the limit when the phase appr
mation@19# is valid, this system, with end effects neglecte
becomes homogeneous because the meaningful parame
this limit is not the frequency but the frequency differen
between neighboring elements. This simplicity allows one
a number of cases to obtain the simplest scaling approxi
tions and formulate fairly general results employing a limit
number of numerical solutions@17#.

In addition, analysis of such chains is of independent
terest because they arise in a natural manner when phe
ena observed in real life are modeled. Two most instruc
examples are the dynamics of the narrow intestine of m
mals and vortex shedding in a flow behind cone-shaped b
ies ~e.g., supports or chimneys!. If the small intestine is di-
vided into sections 1–3 cm long, then each of them is abl
oscillate at a definite frequency that changes along the in
tine almost linearly over large enough distances@20#. Inves-
tigation of the linear changes of frequency observed at vo
shedding also involves analysis of chains of coupled osc
tors with linearly varying natural frequencies, if derivativ
with respect to the coordinate along the cone axis are
placed by finite differences~see, e.g.,@21#!.

The analysis is carried out on an example of chains
oscillators whose dynamics in a quasiharmonic approxim
tion is described by Eq.~1! for slowly varying complex am-
plitudeszj with the boundary conditionsz15z0 ; zN115zN
corresponding to a chain with free ends. The set of equa
~1! is the normal form for a chain of diffusively couple
oscillators of a general form in the neighborhood of a Ho
bifurcation. In subsequent numerical experiments we sep
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50.5 andd520p ~unless otherwise specified!, and the num-
ber of oscillatorsN5100. Here we will consider the influ
ence of random deviation of frequency dependence along
chain from the linear one for three types of frequency dis
butions that are interesting in terms of applications.

In type I distributions, neither total frequency range n
frequency ensemble were fixed and they could change du
variation of both the regular trend and the range of rand
scattering. In type II and III distributions, the total range
values of the natural frequencies of oscillators was const
and only the relative contribution of regular and rando
components was varied.

Although manifestations of the considered effects in s
cific applications are outside the scope of our paper,
chose as qualitative characteristics the functionals that ca
useful for estimating the action of signals from oscillat
chains on some types of sensors. These functionals are
normalized mean ‘‘incoherent’’ energy

«5

K (
j 51

N

uzj u2L
K (

j 51

N

uzj
(0)u2L 5

K (
j 51

N

uzj u2L
Np

~2!

and normalized mean ‘‘coherent’’ energy

w5

K U(
j 51

N

zjU2L
K U(

j 51

N

zj
(0)U2L 5

K U(
j 51

N

zjU2L
N2p

, ~3!

wherezj
(0) are the complex amplitudes of in-phase oscil

tions excited in the limit of infinitesimal frequency mis
match;^•& denotes averaging over time.

III. EFFECT OF SPATIAL DISORDER
ON OSCILLATOR DEATH

For a linear frequency variation along the chain~in the
absence of disorder!, oscillator death is manifested as form
tion at the center of the chain of a region in which oscillati
amplitudes are vanishing. Oscillator death is associated w
the fact that, for a large difference of natural frequencies
neighboring oscillators, the influence of nonresonant ter
proportional tozj 11 ,zj 21 in the equation forzj is relatively
weak, and the diffusive coupling introduces damping~the
term 22dzj ) that exceeds amplification at larged (d
>p/2). For chains with free ends, when the linear frequen
trend grows, this effect is manifested first at the center of
chain where desynchronization occurs first with increas
frequency mismatch@17# ~Fig. 2!.

A. Oscillator death elimination by disorder
expanding the total frequency range„type I distribution …

For the type I distribution considered in this section, t
value of the linear frequency trendDv and the range of
random frequency scatterDv* changed independently o
each other, so that
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v j5Dv
j 21

N21
1Dv* j j , ~4!

where j j are random numbers distributed uniformly in th
interval @20.5;10.5# andN is the number of oscillators in
the chain.

In typical variants of this series, introduction of disord
into a distribution of natural frequencies either did not s
nificantly affect oscillator death~‘‘unfavorable’’ disorder! or
resulted in pronounced growth of the oscillator amplitude,
that the region of death diminished markedly or even v
ished ~‘‘favorable’’ disorder!. The latter was dominating in
the series on the average. Typical examples are represe
by spatial distributions of time-averaged oscillation inten
ties ^uzj u2& in Fig. 3~a! and in Fig. 4~a!, and by spatiotempo
ral diagrams foruzu in Fig. 3~b! and Fig. 4~b!. Figures 3~c!
and 4~c! show spatiotemporal diagrams for Imzj (t) that il-
lustrate the variation of phase in time and space: the va
tion of the picture from maximally dark to light in the regio
of smooth variations of amplitude corresponds to a chang
phase byp.

Mean ‘‘incoherent’’ « and ‘‘coherent’’ w energies are
plotted in Fig. 5 versus the range of random frequency s
ter of oscillator natural frequencies relative to the linear tre
for different values of the trend~the values of« andw were
obtained by averaging the ‘‘incoherent’’ and ‘‘coherent’’ e
ergies over the ensemble of 25 sets of natural frequen
$v j% j 51

N with different samples of disorder!. From the data
presented in Fig. 5~a! it follows that, for the values of pa
rametersDv andd corresponding to weak manifestation
the effect of oscillator death«(Dv* 50)'0.620.7 @the
curves in Fig. 5~a! for Dv50.75,1.5], introduction of disor-
der into the frequency distribution does not lead to p
nounced changes in the average level of incoherent en
(;10%). However, forDv and d such that«(Dv* 50)
'0.1.0.3, more than a twofold increase of incoherent e
ergy can occur when disorder is introduced. It is worth n
ing that this effect is interesting not only from the academ
point of view, because it is observed at the values of« that
are of practical importance. If the effect is evaluated in co
parable frequency gradients, then, as follows from the d
given in Fig. 5~a!, introduction of spatial disorder can b
equivalent to more than a twofold decrease of frequency
dient. For example, the oscillator death effect correspond
to «50.3 for Dv53.0 is approximately the same as f
Dv56.0 but with additionally imposed frequency disorde

FIG. 2. Oscillator death in the chain with constant frequen
gradient~without disorder!. Total frequency range~the difference
between the lowest and highest frequenciesv1 and v100) is 6.0.
Plotted is the time-averaged intensity profile.
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Concerning the ‘‘coherent’’ energyw we can say that,
even in the case of complete synchronization in a chain w
a linear trend, the value of^u( j 51

N zj u2& may be much smaller
than its maximumN2p because of the finite phase differen
between oscillations of neighboring oscillators. Cons
quently, analysis of the normalized value ofw is meaningful
not only for w'1 but for w!1 too. As follows from the
data in Fig. 5~b!, in this case introduction of disorder into
frequency distribution may have the same effect as decre
of the large-scale frequency gradient by more than th
times. In addition, under the action of disorderw can change
in a wider interval than«. For instance, for the data in Fig
5~b!, introduction of disorder atDv52.25–4.5 results in an
almost fourfold increase ofw.

A distinguishing feature of the dependences«
5«(Dv* ), w5w(Dv* ) shown in Fig. 5 is the existence o
the optimal valueDvopt* maximizing« andw. It is interest-
ing that this optimal value of the frequency bandDv* char-
acterizing the spread relative to the mean value at each p
of the array proved to be comparable to the total range

y

FIG. 3. Chain with linear frequency trend and introduced dis
der ~4!, Dv56.0 andDv* 50.2Dv. ~a! Time-averaged intensity
profile ^uzj u2& ~solid line!, averaged frequencies of oscillationsV j

~bold line!, and natural frequenciesv j ~circles connected by dashe
line!. ~b! x-t plot of amplitudeuzj (t)u ~time increases upward for 30
units and the position along the array varies horizontally!; white
corresponds to zero and black to the maximal value of the am
tude, which is aboutAp. ~c! x-t plot of Imzj (t); white and black
colors correspond to minimal and maximal values of Imzj (t) ~about
6Ap), respectively.
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PRE 62 6443DISORDER CAN ELIMINATE OSCILLATOR DEATH
large-scale~regular! variation of frequencyDv. At least, this
is true for the parameter region of practical interest in wh
«.0.1, w.1/N in the absence of disorder.

B. Oscillator death elimination by disorder conserving
the total frequency range„type II and III distributions …

In the previous section we considered an idealized si
tion when large-scale and small-scale inhomogenei
change independently of each other. The case of an ense
of interacting oscillators formed when definite restrictio
are imposed is also interesting in terms of applications
particular, if inhomogeneities are due purely to design, th
one can formulate a problem about the influence of elem
redistribution in space, with the total range of scatter u
changed.

In the type II distribution that was used earlier in inves
gations of the influence of random frequency deviations fr
a linear trend on cluster synchronization@17#, we have

v j5v01
Dv*

2
1

~ j 21!~Dv2Dv* !

~N21!
1Dv* j j , ~5!

so that the frequency distribution changes from monoto
completely regular~at Dv* 50) to a completely irregular
one ~at Dv* 5Dv). Here, again,j j are random number
uniformly distributed in the interval@20.5, 10.5#, N is the
number of elements in the array,Dv is the total range of

FIG. 4. The same as in Fig. 3 but for another sample of disor
~i.e., for another set of$j j% j 51

N ).
h
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natural frequencies of all elements of the array, andDv* is
the bandwidth of random variations of frequency. In fa
with such a choice of frequencies, the oscillator ensemb
forming the array in each series may appear to be quite
ferent.

In type III distributions random inhomogeneity was intr
duced into the linear trend (j 21)Dv/(N21) for a constant
ensemble of oscillators by their random permutation in
array using the following algorithm. We chose a rando
number m that equiprobably took the valu
1,2, . . . ,@Dv* /2Dv#, where @n# is the integer part ofn.
Then, the first andmth oscillators exchanged places@i.e.,
v15Dv(m21)/(N21), vm5Dv(121)(N21)50]. Fur-
ther, we took the unpermuted oscillatorl nearest to the first
oscillator and chosem again@if the (l 1m)th oscillator had
been permuted, the next value ofm was generated# and per-
muted the l th and (l 1m)th oscillators: v l5( l 1m
21)Dv/(N21), v l 1m5( l 21)Dv/(N21), and so on. As
a result, we obtained a system that consisted of the s
elements but connected in the ‘‘wrong’’ order. In such
scheme, the frequency distribution is changed again fr
completely regular (Dv* 50) to completely disordered
(Dv* 52Dv).

Omitting details of the distribution function, the differ
ence between the three types of distribution can be prese

r
FIG. 5. Dependences of ‘‘coherent’’~a! and ‘‘incoherent’’ ~b!

energies« andw on the relative level of disorderDv* /Dv intro-
duced by the rule~4! for different values of linear frequency tren
Dv.
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schematically forDv* /Dv50.5 ~see Fig. 6 in which the
boundaries of frequency ensemblesSI ,II ,III are outlined!. The
three types of distributions have a common region 0. In
first case, it is supplemented by regions 1a,b and 3a,b (SI
5S01S11S3), which expands the total frequency range. N
additional expansion of frequency range occurs for a typ
distribution. Moreover, an inverse~in a certain sense! pro-
cess occurs—the frequencies from regions 2a,b that are con-
centrated in the middle of the frequency range (SII 5S0
1S2) are added. For type III distribution, in contrast, mo
oscillators with frequencies at the edge of the range (SIII
5S01S3) are added. With these features taken into acco
qualitative considerations lead us to the conclusion that
strongest effect should be expected for the case of a typ
distribution when introduction of disorder is accompanied
a higher concentration of frequencies near the middle of
range, whereas for a type III distribution the effect is wea
due to the inverse effect produced by expansion of the
quency range. This tendency is observed in numerical
periments too~examples are given in Fig. 7!. It is interesting
that, even in the case of an absolutely random freque
distribution ~at Dv* /Dv51 for type II distribution and at
Dv* /Dv52 for type III distribution!, oscillator death may
be much weaker than for a monotonic frequency variat
along the array.

IV. MECHANISMS OF DISORDER INFLUENCE
ON OSCILLATOR DEATH

A study of controlling the cluster pattern formation in th
system under consideration@17# indicates that there exist a
least two mechanisms of action of introduced disorder
oscillator death. One of them is involved with transformati
of attractor~or attractors! as a whole, and the second, whic
is effective at multistability, implies that the attracto
change only slightly, and only their attraction basins a
transformed@17#. However, it was found that bistability re
gions occupy only a small portion of parameter space. So
role of the second mechanism is insignificant, if any. In o
case, it could manifest itself only atDv'1, i.e., at relatively
weak oscillator death. However, the difference in the val
of ‘‘incoherent’’ energy«(Dv* 50) for four-cluster~0.630!
and five-cluster~0.628! structures is small and comparab
with the changes of their energies under the action of w
disorder without change in the number of clusters. In parti

FIG. 6. Scheme of sets of frequencies for distributions of th
different types atDv* /Dv51/2 ~see text!.
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lar, for Dv* 50.035, the values of«(Dv* 50.035) are equal
to 0.616 and 0.638, respectively.

The action of the first mechanism involved with transfo
mation of the entire cluster structure is demonstrated in F
3 and 4. It is clear from these figures that favorable situati
are possible when disorder gives rise to synchronized c

FIG. 8. ~a! Power spectrum of random component ofv j de-
picted in Fig. 3~dashed line! and of filtered random componen
~solid line!; ~b! « vs relative disorder level; the same set of rando
numbers$j j% j 51

N was used with differentDv* . Solid line corre-
sponds to filtered disorder, dashed line to nonfiltered one;Dv
56.0.

e

FIG. 7. Energy« vs disorder level for different types of distri
bution: I ~solid lines!, II ~dashed lines!, and III ~dot-dashed lines!.
Again, the data represent, three different values of linear trend
dient Dv/(N21): relatively small,Dv53.0 (n); moderate,Dv
56.0 (s, bold lines!; and relatively large,Dv512.0 (h).
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PRE 62 6445DISORDER CAN ELIMINATE OSCILLATOR DEATH
ters with oscillation intensities comparable to those obser
in arrays without oscillator death. Formation of such clust
is caused by long wave components in the frequency di
bution. Let us explain this on a very simple example, wh
superimposed frequency scatter has a purely sinusoida
pendence, so that

v j5Dv
j 21

N21
1

Dv*

2
sin

2p

Nl
~ j 21!,

where Nl is the spatial period. Apparently, the as-form
frequency distribution at sufficiently large amplitude of d
viations (Dv* /Dv>p/Nl) will have nearly horizontal pla-
teaus, so thatv j 112v j!Dv/(N21). For Nl@1, the size
of these plateaus will be large enough for the synchroni
clusters formed under conditions of small mismatch to
pend relatively weakly on the desynchronization action
the elements located in regions with large gradients ofv j .

This is confirmed by comparing the dependences«(Dv* )
obtained for disorder with filtered short wave compone
and unfiltered disorder. For the specific series of disor
corresponding to Figs. 3 and 4, the spectra and relevan
pendences«(Dv* ) are given in Figs. 8 and 9. The rando
component ofv j was filtered with the aid of a linear low
pass filter,

v j5Dv
j 21

N21
1Dv* F@j j #,

where

F@j j #5~j j 211j j1j j 11!/3

acts as a filter of high harmonics@22#. It is worthy of interest
that the short wave components of spatial disorder wea

FIG. 9. The same as in Fig. 8, but forv j depicted in Fig. 4.
d
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n
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-
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ly

affect the value of energy«. Therefore, it is actually de-
manded that the frequency distribution should have su
ciently extended plateaus ‘‘on the average’’ as is illustra
in Fig. 10. This figure presents the case of a distribution
which the frequency gradients of the initial distribution a
retained everywhere except at several points. Jumps at s
points provide nonmonotonic variation of frequency a
conservation of the total range of frequency scatter as in
case of their monotonic variation. With the mechanism d
scribed above taken into account, the optimal value of f
quency scatterDvopt* in Figs. 5, 7, 8, and 9 becomes clear.
is due to the fact that only a long wave component of su
ciently large amplitude can compensate the initial freque
gradient in the array.

V. CONCLUSION

In this paper we demonstrated that introduction of rand
deviations from a regular, smooth trend of natural frequ
cies of oscillators of a one-dimensional oscillatory array c
significantly decrease the degree of oscillator death in
system and thus increase the total intensity of oscillatio
There exists an optimal level of disorder at which the os
lation energy of the system is maximized. The dependenc
oscillation energy on the level of disorder~when the oscilla-
tor death is well pronounced in the absence of disorder! is
bell shaped.

There are many examples of nontrivial, ‘‘positive’’ actio
of temporal or/and spatial irregularities on system dynam
As a well-known example for the case of temporal irregul
ity we mention stochastic resonance@23#. Several examples
for the case of spatial irregularity were already presented
the Introduction@4–6#. The effect described in this paper ca
be considered as another example of the nontrivial action
disorder in arrays of coupled oscillators.
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FIG. 10. The chain with meander of magnitudeDv* imposed
on linear frequency trend,Dv56.0 and Dv* 50.2Dv. Time-
averaged intensity profilêuzj u2& ~solid line!, averaged frequencie
of oscillationsV j ~bold line!, and natural frequenciesv j ~circles
connected by dashed line! are presented.
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